


Kinetic Theory

The above p-v diagram represents the thermodynamic cycle of an engine, operating with an ideal monoatomic gas. The amount of heat, extracted from the source in a single cycle is:

JEE 2013

Q.No.2: Consider a spherical shell of radius *R* at temperature *T*. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $u = \frac{U}{V} \propto T^4$ and pressure $P = \frac{1}{3} \left(\frac{U}{V} \right)$. If the shell now undergoes an adiabatic expansion the relation between *T* and *R* is:

JEE 2015

A.
$$T \propto e^{-R}$$

B. $T \propto e^{-3R}$

C. $T \propto \frac{1}{R}$ D. $T \propto \frac{1}{R^3}$

Q.No.3: An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure *P* and volume *V* is given by PV^n = constant, then *n* is given by (Here C_P and C_V are molar specific heat at constant pressure and constant volume, respectively): **JEE 2016**

A.
$$n = \frac{C-C_P}{C-C_V}$$

B. $n = \frac{C_P-C}{C-C_V}$
C. $n = \frac{C-C_V}{C-C_P}$
D. $n = \frac{C_V}{C_P}$

Q.No.4: The temperature of an open room of volume 30 m³ increased from 17°C to 27°C due to the sunshine. The atmospheric pressure in the room remains 1×10^5 Pa. If n_i and n_f are the number of molecules in the room before and after heating, then $n_f - n_i$ will be : **JEE 2017**

- **A.** -2.5×10^{25}
- **B.** -1.61×10^{23}
- **C.** 1.38×10^{23}
- **D.** 2.5 \times 10²⁵

Q.No.5: A mixture of 2 moles of helium gas (atomic mass = 4u), and 1 mole of argon gas (atomic mass = 40u), is kept at 300 K in a container. The ratio of their rms speeds $\left[\frac{v_{\rm rms} \,({\rm helium})}{v_{\rm rms} \,({\rm argon})}\right]$, is close to:

- **A.** 3.16
- **B.** 0.32
- **C.** 0.45
- **D.** 2.24

Q.No.6: A 15 g mass of nitrogen gas is enclosed in a vessel at a temperature 27°C. Amount of heat transferred to the gas, so that rms velocity of molecules

is doubled, is about: [Take R = 8.3 J/K mole]
 A. 0.9 kJ
 B. 6 kJ

- **C.** 10 kJ
- **D.** 14 kJ

Q.No.7: A gas mixture consists of 3 moles of oxygen and 5 moles of argon at temperature T. Considering only translational and rotational modes, the total internal energy of the system is: **JEE 2019**

- **A.** 15 RT
- **B.** 12 RT
- **C.** 4 RT
- **D.** 20 RT

Q.No.8: On the basis of kinetic theory of gases, the gas exerts pressure because its molecules : JEE 2021

- **A.** suffer change in momentum when impinge on the walls of container.
- **B.** continuously stick to the walls of container.
- **C.** continuously lose their energy till it reaches wall.
- **D.** are attracted by the walls of container.

Q.No.9: In a certain thermodynamical process, the pressure of a gas depends on its volume as kV³. The work done when the temperature changes from 100°C to 300°C will be _____nR, where n denotes number of moles of a gas. JEE 2021

Q.No.10: A monoatomic gas of mass 4.0 u is kept in an insulated container. Container is moving with velocity 30 m/s. If container is suddenly stopped then change in temperature of the gas (R = gas constant) is $\frac{x}{3R}$ Value of x is

JEE 2021